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A configuration-interaction energy function (Lagrange) which is variational 
in all variables, including the orbital rotational parameters, is constructed. 
When this Lagrangian is used for obtaining configuration-interaction deriva- 
tives, all the important simplifications which occur for derivatives of  vari- 
ational wave functions carry over in a straightforward way. In particular, the 
state and orbital rotational response parameters obey the 2n + 1 rule and the 
Lagrange multipliers obey the somewhat stronger 2 n + 2  rule. The sim- 
plifications which are normally obtained by invoking the Handy-Schaefer 
technique are automatically incorporated to all orders. Simple expressions 
for energy derivatives up to third order are presented. The relationship between 
the numerical errors in the variational parameters and the errors in the 
calculated energy derivatives is discussed. 
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1. Introduction 

The advantages of  fully variational methods over non-variational methods in 
calculations of  energy derivatives have long been recognized. Indeed, the vari- 
ational approaches such as self-consistent-field (SCF) and multi-configurational 
self-consistent-field (MCSCF) were the first to be considered both from a theoreti- 
cal and a practical point of  view [1-3]. Derivatives of  the configuration-interaction 
(CI) energy appeared later [4-7] due to problems in handling the contributions 
from the non-variational molecular orbitals [8-9]. An important simplification 
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in the calculation of CI  derivatives was obtained in 1984, when Handy and 
Schaefer showed how the contributions from the high-order derivatives of  the 
orbital rotational parameters  could be rewritten in terms of the solution vectors 
of  certain low-order equations [10]. The Handy-Schaefer  technique has since 
been applied to the coupled-cluster (CC) [11-12] and Mc~ller-Plesset (MP) [13] 
derivative expressions, yielding significant computational  savings. 

Notwithstanding the practical importance of the Handy-Schaefer  technique, it is 
somewhat  unsatisfactory that in each specific case it must be applied in a rather 
ad hoc manner.  Although it is straightforward to apply the technique to lower- 
order derivatives such as the gradient, for higher derivatives the technique 
becomes rather cumbersome and tedious. It is no longer obvious how many sets 
of  lower-order linear equations must be solved to take full advantage of the 
technique, or how one should proceed to derive the appropriate linear equations. 
Also, no satisfactory interpretation has been offered of the Handy-Schaefer  
technique except that it can be interpreted as a partial reoptimization of the 
MCSCF orbitals in the CI  field [14]. 

In this paper  we show how it is possible to construct a modified CI  energy 
expression which is fully variational in both the state and the orbital rotational 
parameters,  as well as in a set of  Lagrange multipliers. The derivative expressions 
may then be obtained by using the standard techniques for variational wave 
functions. In particular, the state and orbital rotational parameters obey the 2n + 1 
rule, and the Lagrange multipliers the stronger 2n + 2 rule. The Lagrange multi- 
pliers and their derivatives are determined from sets of  linear equations identical 
to those obtained by applying the Handy-Schaefer  technique in an optimal way. 
However, in our formulation these equations and the associated computational 
savings appear  naturally and require no special attention. 

Recently, Rice and Amos [15] and Shepard [16] have shown that CI  gradients 
contain two distinct but similar contributions, one of which is constructed from 
CI densities and the other from modified MCSCF densities. Our approach 
generalizes this result to higher orders. For example, we shbw that the CI  Hessian 
consists of  two contributions, both of  which are similar in structure to the 
expression for MCSCF Hessians. One of these contributions is calculated from 
CI densities and wave function responses, the other from modified MCSCF 
densities and MCSCF wave function responses. 

The Lagrangian technique used in this paper  has in a less complete form been 
applied to coupled-cluster wave functions [3]. Indeed it can be applied to any 
computational  method whose electronic parameters  are not variationally deter- 
mined. 

2. Derivatives of  variational energies 

We assume that the electronic energy function ~(x, t) depends on two sets of  
parameters: the molecular geometry x and the variational parameters t. Expanding 
the energy at an arbitrary geometry x in the variational parameters At = t - t (~ 
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we obtain  

~'(x, t)= ~(x)+ o~(x) At +�89 At2 +~y{(x) At 3 + ' ' "  (1) 

where ~ ( x )  and the electronic derivatives o~(x), C~(x), and Y{(x) are calculated 
at t (~ The total  molecular  electronic energy 7,V(x) is obta ined  by impos ing  the 

condi t ion 

o~(x, t~ = 0 (2) 
ot 

at all geometr ies  x. Eq. (2) determines At as a funct ion of  x, and the total electronic 
energy becomes  

~ ( x )  = ~(x)+ o~(x) at(x)+�89 ~Xt2(x)+~X(x) at3(x)+ . . . (3) 

where t(x) fulfills the equat ion 

o~(x) + ~(x)  At(x) +�89 2~t2(x) + . . . .  0. (4) 

Differentiat ing Eqs. (3) and (4) with respect  to x we obtain at x0 

~v(o~ = ~0~ (5) 

7g.m= ~(1) (6) 

7/V(2) = g(2)+2o%(1)t(1)+ ~(~ (7) 

c/~(3)  = c~(3)+3o~(2)t(l)+3c~(l)t(1)t(U+o~f(O)t(~)t(1)t(1) (8) 

and 

~-(o) = 0 (9)  

~-(1) ..~_ ~(o)t(1) = 0 (10) 

The zeroth-order  condi t ion of  Eq. (9) determines  t (~ since ~(o) is calculated at 
t (~ and the first -order  condi t ion of  Eq. (10) determines t (1) = A t  (1). In the above 
expressions Eqs. (6)-(8)  we have used the zeroth-order  condi t ion Eq. (9) to 
el iminate t (1), t(2), a n d  t (3) f rom o02(~), ~(2),  and c~(3), respectively,  and the 
first-order condi t ion Eq. (10) to el iminate t (2~ f rom ~ Note  that  the derivatives 
obey the 2 n + l  rule [17]. 

In pract ice the wave funct ion and the wave funct ion responses  (the t parameters )  
are de te rmined  to some preset  residual accuracy.  The calculated derivatives Eqs. 
(5)-(8)  then contain errors that  depend  on this residual accuracy.  One can show 
that  the error  in o02(o) is quadra t ic  in the error in the wave funct ion and that  the 
errors in ~ o/~/'(2), and o~(3) are l inear in the error in the wave function. Also 
the error in ~(2) is quadra t ic  in the error in t (l~, while the error in ~ is l inear 
in the error  in {1). Hence,  a l though odd-order  derivatives have an edge over  
even-order  derivatives in that  a fewer n u m b e r  of  l inear equat ions must  be solved, 
they are also more  sensitive to errors in the highest -order  wave funct ion response.  
In m a n y  cases the Hess ian  is calculated f rom the expression 

3d/-(23 = g(2)+ o~(l)t(~) (11) 
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which is obtained from Eq. (7) by using the first-order condition Eq. (10). 
However, Sellers [18] pointed out that the symmetric expression Eq. (7) is to be 
preferred since the error in 74/"(2) is linear rather than quadratic in the error in 
t (1) when Eq. (11) rather than Eq. (7) is used. The computational expenses are 
identical for the two expressions. More general discussions of errors occurring 
as a result of  using wave functions and wave function responses that are deter- 
mined to a preset tolerance can be found in [19]. 

3. CI  e n e r g y  f u n c t i o n  

CI energies and wave functions are usually obtained in the following way. First 
an MCSCF calculation is carried out to determine a set of molecular orbitals. 
This is achieved by optimizing the MCSCF energy function e(x, A) with respect 
to all variational parameters A: 

Oe(x, A) 
- -  - 0  (12 )  

0h 

where 

is the collection of independent MCSCF orbital rotational parameters K and 
MCSCF state transfer parameters p. Next the CI energy is optimized with respect 
to the configuration expansion coefficients, keeping the MCSCF orbitals fixed. 
The CI energy function E (x, A) thus depends on the CI state transfer parameters 
P and the MCSCF orbital rotation parameters K 

A = [  P]  (14) 

where the orbital part of A (i.e. K) satisfies Eq. (12) and the CI state transfer 
parameters satisfy the CI variational condition 

OE(x, A) 
- - = 0 .  (15) 

OP 

The calculation of the CI energy and wave function may be viewed in a slightly 
different way: we wish to optimize E(x,A) with respect to A subject to the 
constraint that e(x, 1) is optimal with respect to 1. A standard technique for 
constrained optimization is to introduce a set of undetermined Lagrange multi- 
pliers ~, one for each constraint. This gives us the CI Lagrangian 

~(x, t) = E(x, A) + ~" Oe(x, h) (16) 
Oh 

where t is the collection of  Lagrange multipliers, CI state transfer parameters, 
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MCSCF orbital rotation parameters, and MCSCF state transfer parameters: 

[ i ]  (17) 

The CI energy and wave function may now be determined by an unconstrained 
optimization of g(x, t) with respect to t. The CI energy is variational in all 
parameters. 

The CI Lagrange g(x, t) fs not especially useful for energy optimizations since 
the constraints are easily handled by first determining a set of orbitals using Eq. 
(12) and then keeping the orbitals fixed during the optimization of the configur- 
ation coefficients. The only advantage of g(x, t) over E(x, A) in that the error 
in the CI energy in quadratic in the error in the orbitals when g(x, t) is used, 
but linear in the error in the orbitals when E(x, A) is used. However, this does 
not justify using a larger variational space. In contrast, g(x, t) is very useful for 
calculating derivatives since the variational property ensures that we can take 
full advantage of the simplifications that occur for fully variational wave functions, 
in particular the 2n + 1 rule. Epstein has previously shown that energy Lagrangians 
satisfy a 2n + 1 rule. In Sect. 4.2 we demonstrate that Lagrange multipliers even 
satisfy a 2 n + 2  rule. 

Let us conclude this section by stating the CI variational condition in terms of 
the Lagrangian function g(x, t): 

Og Oe 
- 0  (18) 

~ oa 

ag  oE 
=0  (19) 

OP OP 

O~ OE I- 02e 
- ~7 _--7-; = O. ( 2 0 )  

0A 0A 

Eqs. (18) and (19) are, respectively, the usual MCSCF and CI variational 
conditions while the linear set of equations, Eq. (20), determines the Lagrange 
multipliers and ensures that the energy is fully variational. 

4.  C I  e n e r g y  der iva t ive s  

In the following we denote the electronic derivatives (i.e., the derivatives with 
respect to the variational parameters) of the CI energy expectation value by 
capital letters 

E(x, A) = E(x) + F(x)A +�89 + IK(x)A  3 + . . .  (21) 

and the electronic derivatives of the MCSCF energy by small letters 

e(x, A) = e(x) +f(x)A +~g(x)A 2 +~k(x)A 3 +~4/(x)A4+ ' ' '  . (22) 
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In Eqs. (21) and (22) we have assumed that the wave functions are parametrized 
such that A (~ and h (~ are zero. The electronic derivatives of the CI Lagrangian 
are denoted as in Eq. (1). By straightforward differentiation of  Eq. (16) we obtain 

~(x) = E(x) + ~(~ (23) 

~(x)= F(x) + (24) 
L~(0~g(x) 

[i ~ ~176 ~ 1 -- + 0 0 0 Cg(x) G(x) 0 (25) 

o o g(x) o ~(~ 
t 3 

Y{(x) At 3 = K ( x ) A  + ~'(~ + 3k(x)h 2 A~" (26) 

where for both Eqs. (24) and (25) the dimensions of  the sub-blocks in the two 
terms are not the same. Note that ~q(x) is not positive definite, hence the optimized 
energy does not represent a minimum. Also note that ~(o) is not zero. 

4.1. Response equations 

The variational CI response equations are obtained by inserting the electronic 
derivatives of  the CI Lagrangian Eqs. (24) and (25) into the general expressions 
Eqs. (9) and (10). We obtain to zeroth order 

f(o~ = 0 (27) 

OF(~ = 0 (28) 

_g(O~.(o) = (29) 

and to first order 

_g(O)h(1) =f(1) (30) 

_CCG(o)p(1) = CF(1) + COG(O~ K (11 (31) 

-g(~ = [~ + ~176 + ~176176 + g(1),(~ + k(~176 (1) (32) 

where left superscripts c and o on the CI electronic derivatives denote the 
configuration and orbital blocks, respectively. 

The above sets of equations are coupled and must be solved in the order indicated. 
For example, ~(o~ cannot be determined from Eq. (29) until Eqs. (27) and (28) 
(the MCSCF and CI variational conditions) are satisfied. Similarly the first-order 
responses must be solved in the order ,~(1), p(1), and ~(1). 
The zeroth-order equations Eqs. (27) and (28) and the first-order equations Eqs. 
(30) and (31) are the usual MCSCF and CI equations discussed many places 
[6, 8, 21, 22]. The equations Eqs. (29) and (32) determine ~(o) and ~(1), 



Configuration-interaction energy derivatives 117 

and occur  since we insist on a variat ional  formula t ion  of  the CI  energy. The 
l inear sets o f  equat ions which determine r and r have the same structure as 
the equat ions which de termine  h (1), and they are identical  to the equat ions  that  
a p p e a r  when  the H a n d y - S c h a e f e r  technique is invoked in an opt imal  way to 
s implify the calculat ion o f  CI  derivatives in a s tandard  (non-var ia t ional)  formu-  
lation. 

4.2. Derivat ive expressions 

The CI  derivative expressions are obta ined by substituting the electronic deriva- 
tives of  the CI  Lagrangian  Eqs. (23)-(26) into the general  expressions Eqs. (5)-(8).  
We obtain,  to third order  

w(O) = E(O)+ ~.(o)f(o) (33) 

W(1) = E(1)+ ~(o)f(1) (34) 

W(2) ~_ E(2) + 2F(1)A(1) + G(O)A(1)A(I) + ~(o)(f(2) + 2g(l)h (1) 

+ k(O)A (1) h (1)) + 2~(1)(f(1) + g(O) h (1)) (35) 

W (3) = E (3) + 3F(2)A (1) + 3 G(1)A(1)A (1) + K (~ 

+ ~(o)(f(3) + 3g(2)A (1) + 3k(1)h (l)h (~) + l(O)h (1)h (1)A (1)) 

+ 3 ~(1)(f(2) + 2g(1)h (1) + k(O)h (1) A (1)). (36) 

The last terms in the expressions for W ~~ and W (2) vanish since the zeroth-  and 
first-order M C S C F  condit ions,  Eqs. (27) and  (30), are satisfied. In general,  in 
even-order  derivatives W (2") the terms containing ~(') vanish since the n th-order  
M C S C F  condi t ion is satisfied. Hence  ~ obeys a 2 n + 2  rule. 

I f  we in t roduce the no ta t ion  

e(,.,.) = ~(.)f(m) (37) 

f ( " ' )  = ~(")g('~) (38) 

g(m,.) = ~(.)k(, .)  (39) 

k(,,,,.) = ~(.)l(m) (40) 

the CI  derivatives may  be writ ten as 

W (~ E (~ (41) 

W (1) = E (1) + e (1'~ (42) 

W (2) = E (2) + 2F(1)A (~) + G(~ (1) 

+ e(2.o) + 2f(x,o)h (1) + g(O,O) h (1)A (1) (43) 

W (3) -- E (3) q- 3F(2)A (1) -b 3 G(1)A(~)A (~) + K (~ 

+ e (3'~ -k 3f(2'~ (1) + 3g(l'~ (1) + k(~176 (~) 

+ 3(e(2,1) + 2f(1,1) A (1) q_ g(O,i) A (1)A(1)) (44) 
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It is instructive to compare these expressions with the MCSCF energy derivatives 
w(n): 

W(1)'~- e (1) (45) 

W (2) = e (2) + 2 f  ~ (1) + g(O) h (1)h (1) (46) 

W (3) = e TM + 3f(2)A (1) + 3g(1)h (1)A O) + k(~ O)h(1)A(1). (47) 

In Sect. 5.3 we show that the quantities a (re'n) (a = e,f, g, k) which appear  in the 
CI  derivatives (42-44) are identical to the electronic derivatives a (m) which appear  
in the MCSCF derivatives (45-47), except that a (m'n~ are calculated from a set 
of  modified MCSCF densities. Note that e (~ is zero, which implies that the 
modified MCSCF densities give energy zero. 

Comparing the MCSCF and CI  energy derivative expressions we note their 
structural similarities. Each CI derivative contains a contribution (capital letters) 
which is identical in structure to the MCSCF energy derivative expression, in 
other words, identical to the expression one would obtain by treating the para- 
meters of  the CI  expectation value [Eq. (21)] as variational. The non-variational 
character of  the CI expectation value is corrected for by adding one or more 
MCSCF derivatives (small letters) calculated from modified densities. This gen- 
eralizes the result of  Rice and Amos [15] and Shepard [16], namely that the CI  
gradient can be calculated in the same way as the MCSCF gradient by constructing 
a set of  modified densities. 

In general the numerical error in variational Hessians is quadratic in the error 
in the first-order response of  the wave function. This is also true for the CI  
Hessian calculated from Eq. (35). However, if the Hessian is calculated from the 
simpler expression Eq. (43), the error becomes linear in the error in the MCSCF 
first-order response h m since we have used the first-order condition, Eq. (30), 
to eliminate the terms containing ~(1). Nevertheless, this is a small price to pay 
for such a significant saving. Note that Eq. (43) still gives errors which are 
quadratic in the error in p(1). 

5. Parametrization of  wave functions and electronic derivatives 

5.1. The CI  wave function and electronic derivatives 

The CI  state is parametrized as 

IA) = exp ( -K)  exp ( - P ) I C I )  (48) 

where [CI) is the optimized state at the reference geometry (the reference state) 
[23]. The operators K and P are given by 

P =  ~ PKRK (49) 
K~CI 

= E ,,vqQ,,q (50) 
p > q  

in terms of  the state transfer and orbital rotation operators 

RK = [K)(CI I - I c I ) ( K [  (51) 

Qpq = Epq - Eqp. (52) 
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The orthonormal set of states {tK)} constitutes a basis for the orthogonal comple- 
ment to ]CI), and {Epq} are the usual orbital-excitation operators (generators of 
the unitary group). 

The CI expectation energy 

E(x,  A) = (AIH(x)IA) (53) 

is calculated from the Hamiltonian 

H ( x )  = E hpq(X)Epq + I  E gpqr,(X)(EpqErs - (3rqEps) (54) 
pq pqrs 

where the summations are over symmetrically orthonormalized molecular orbitals 
[3, 8, 24], and hpq(x) and geqr,(x) are the usual one- and two-electron integrals. 

Substituting Eq. (54) into Eq. (53) and setting A = 0, we obtain 

E(x )  ~_, ct 1 dCl , , = Dpqhpq(X)q-g ~ pqrsgpqrs(X) (55) 
pq pqrs 

where the CI density elements are given by 
Ct 

Dpq = (cIIGqlCI) (56) 

d pC~,-s = ( CIlEpqErs - &qEpslCI). (57) 

By expanding the CI energy 

E(x,  A) = (CIlexp (P) exp (K)H(x)  exp (-K) exp (-P)ICI)  (58) 

in a Baker-Campbell-Hausdorff (BCH) series around x0 we obtain explicit 
expressions for the CI electronic derivatives of Eq. (21). Using the notation T~ 
for RK or Qpq, these derivatives may be written 

E("~ = (CIIH('~]CI } 

F~ ~ = (CIl[ T. H~n~]ICI) 

a!g ) -- (CIl[ Ti, Tj, H(n)][CI) 
K(n~- (CII[T,, Tj, Tk, H(")]]CI) Ok -- 

(59) 

(60) 

(61) 

(62) 

where the symmetric commutators [25] should be interpreted as follows. First 
rearrange the operators Ti so that all state transfer operators RK appear to the 
left of the orbital rotation operators Qpq. Then symmetrize over the state transfer 
operators and the orbital rotation operators separately. The following example 
illustrates the notation: 

(CI][Gq , R~, RL, H~"q]CI)= (CI][R~, RL, [Qpq, H~")]]]CI) 

= ~(CII[RK, [RL, [Gq,  H(~ CI) 

+�89 [RK, [Qpq, H(n)]]]]CI). (63) 

The evaluation of these electronic derivatives, in particular the multiplication of 
vectors on the derivatives, has been discussed elsewhere [3, 25, 26]. In Eqs. (59-62) 
H ~n~ denotes the nth-order derivatives of the Hamiltonian with respect to 
geometrical distortions. Explicit expressions for these derivatives can be found 
in [3, 9]. 
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5.2. The MCSCF wave function and electronic derivatives 

The MCSCF wave function is parametrized in the same way as the CI wave 
function [23]: 

[A) = exp ( -K)  exp ( -p ) lMC)  (64) 

Here [MC) is the optimized state at the reference geometry (the reference state), 
the orbital rotation operator K is the same as in the CI case [Eq. (50)], and the 
state rotation operator p is defined in terms of an orthonormal basis {[k)} for the 
orthogonal complement to ]MC): 

p= }~ pkRk (65) 
kC-MC 

Rk ~-Ik)(MC[- IMC)(k I. (66) 

Keeping with the notation for CI operators we shall use ti to refer to either the 
orbital rotation operators Qpq [Eq. (52)] or the state transfer operators Rk [Eq. 
(66)]. 

We may expand the MCSCF expectation value (AIH(x)IA) in exactly the same 
way as we expand the CI energy. The resulting electronic derivatives are identical 
to the CI derivatives Eqs. (59)-(62) except that [MC) replaces [CI) and t~ replaces 
T/. This procedure is convenient for calculating MCSCF energy derivatives Eqs. 
(45)-(47) [26] and may also be used for calculating CI derivatives. However, 
when CI derivatives are calculated, the MCSCF electronic derivatives are always 
multiplied by a single set of Lagrange multipliers ~'(') and possibly by one or 
several additional sets of MCSCF response vectors h (1). To avoid the explicit 
construction of the MCSCF electronic derivatives these multiplications should 
be carried out in a direct fashion. However, the presence of  the symmetrized 
commutators in the electronic derivatives [as in Eqs. (61) and (62)] then makes 
it more difficult to treat ~'(') and h (1) separately. In the following we describe 
how the multiplication of ~'(") can be carried out such that this multiplication is 
avoided. 

We determined h (x) above by requiring the MCSCF gradient f (x ,  A) to vanish 
at all geometries: 

O(AIH(x)IA) 
f~ = - 0. (67) 

It can be shown that [25] 

a<AlH(x)lA>_ Z A0<hl[tj, H(x)]lX> (68) 
0hi j 

where A~ is non-singular. [(A [[ti, H(x)]IA ) is often referred to as the generalized 
Brillouin theorem (GBT) matrix element. It is identical to the gradient only when 
A = 0.] Hence the requirement that the MCSCF gradient vanishes is equivalent 
to the requirement that the MCSCF GBT vector vanishes. We may therefore 
construct the CI Lagrangian in terms of the MCSCF GBT vector rather than the 
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MCSCF gradient, and determine h (x) by requiring that the MCSCF GBT matrix 
elements vanish at all geometries. We adopt this procedure for reasons that will 
become apparent below. To avoid new notation we will denote the GBT matrix 
elements by f and its electronic derivatives by go, kok, and lo.kl. However, it 
should be kept in mind that these quantities are strictly speaking not the same 
as those previously referred to by the same notation. For example, in gu, kijk, 
and 10kt the first index denotes the GBT matrix element and not differentiation. 
These quantities are therefore symmetric with respect to permutations involving 
all indices except the first. 

To determine the electronic derivatives of the GBT matrix elements we BCH 
expand the expressions 

L q ( X ,  1~) "~- (MC I exp (p)[Qpq, exp (K)H(x) exp (-K)] exp (-p)IMC> (69) 

f~(x, ;t) = (MCI[Rk, exp (p) exp (~)H(x)  exp (-K) exp (-p)]lMC> (70) 

for all p > q and all k # MC. At xo we obtain 

fl ")= (MCl[t. H(")]IMC) (71) 
g(")= (MCI[t,, [tj, H(")]]IMC> (72) ij 

k(")-  (MC[[t,, [tj, tk, H(")]]IMC) (73) i j k - -  

l (")-  (MCl[ti , [tj, tk, h, H(")]]IMC) (74) /jkt --  

where the commutators are to be interpreted in the following way. First rearrange 
the operators such that all state transfer operators appear to the left of the orbital 
rotation operators, and such that within each group the operator defining the 
GBT matrix element (if present) appears before the operators corresponding to 
differentiation. Then symmetrize the state transfer operators and the orbital 
rotation operators separately, excluding the operator defining the GBT matrix 
element from the symmetrization. The following examples illustrate the notation: 

(") -(MCl[qpq, [Q~,, Rk, R,, H(")]]IMC ) pq, rs,k,l - -  

= (MCI[Rk, R,, [Qpq, [Qrs, H(")]]]IMC} (75) 

l(~) = (MCI[Rk, [R~, Qpq, Qrs, H(n)]]IMC) k,l, pq, rs 

= (MCI[Rk, [n~, [Qpq, Qrs, H(")]]]IMC). (76) 

Note that the expressions are only symmetric in the second and higher indices. 

5.3. Calculation of  terms containing, electronic derivatives a ("'m) 

In this section we discuss the calculation of the quantities a (n'm) [Eqs. (37)-(40)] 
in greater detail. In particular we illustrate how CI derivative terms containing 
a (~'~ may be calculated in a way which closely parallels the calculation of MCSCF 
derivative terms containing a ('). 

We start by comparing the calculation of e (~'~ and e ("). The term e (~) is simply 
the expectation value of the nth derivative of the Hamiltonian: 

/~MC/a (n) ..L 1_ d M C  ~(n) 
e ( " )  Z ~ p q  " p q  - -  2 ~ - -pqrsgpqrs  ( 7 7 )  

pq pqrs 
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where the densities are defined as in Eqs. (56)-(57) but in terms of the MCSCF 
reference state. In a similar way 

e('~ = E ~'l~ H(")]l MC) (78) 
i 

may be written as the expectation value of  a set of  effective density elements: 

/-~ E 1/~ (n) ..1_ 1 dE1 ~(n) 
e ( ' ~  E LJpq , ,pq - - 2  ~ --pqrsgpqrs* (79)  

pq pqrs 

The one-electron effective density is given by [15, 16] 

Dpaq ' = -{~ r(~ oMC}pq  -- 2 D  Met" (80) 

where the first term is a one-index transformed MCSCF density 

(y(O)/~ MC..~./,-(0)D MC" ~ (81) {~.(0), DMC}pq = E ,~po~ --o,q -- .qa  --po, / 
o~ 

and the second term is a transition density 

j M C ; =  2 K~~ �9 (82) 
Pq 

k#MC 

E1 The two-electron densities dpqrs a r e  obtained in a similar way. Once the effective 
densities have been constructed, e (") and e ("'~ may be calculated in the same way. 

We now turn to the CI derivative terms f<"~ and compare these with the 
terms f ( ' )A <1) which appear  in the calculation of MCSCF derivatives: 

f( ,)A (l) = of ( . )  K(l) q_ cf( . )p(1).  (83) 

The orbital part  may be calculated as 

~ = 2 TrK(1)~ (") (84) 

where @(') is the Fock matrix [27] 

r~MC~ (n) //MC . (n )  (85)  lffD(n) = ~ L..pfl ,,qfl + ~ ~"~p~'ySiSq~'y6" - - p q  

The configuration part is calculated according to 

--  d M C p a  (n) (86) c f ( . ) p i l ) =  - 2  ~ DMCph(n)  ~ --pqrs z~pqrs - - p q  "'pq 
pq pqrs 

where the transition densities are given by 

D M C p _  2 P(k~)(MCIEpq[ k )  (87) pq --  
kcMC 

and similarly for two-electron densities. 

The CI derivative terms f("'~ may be partit ioned in the same way 

f(,,o)h(l) = of( n,O) K (1) _f - ~f( .,O) p (1) (88) 

where both parts may be calculated as above [Eqs. (84) and (86)], but in terms 
of a set of  modified densities. The orbital part becomes 

~176 (1) = 2 TrK(1)(I) (',~ (89) 
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where ~(,,0) is defined as in Eq. (85) but calculated from the effective densities 
of Eq. (80) that are used in the calculation of e ("'~ The configuration part is 
calculated as 

D E 2 h  (n) dE2  _(-) _ 2e(-) cf(n,o)p(1)= --2 Z ~ p q  "*pq -- E -pqrs~pqrs E ~(k~ 1) (90) 
pq pqrs k ~" MC 

where we have introduced a new set of effective densities 

Dye2 = _{~(o), DMCp}pq-- E C(k~ l) (91) 
kl 

and similarly for the two-electron case. Note the similarity between the two sets 
of effective densities in Eqs. (80) and (91). We conclude that f ( '~176  may be 
calculated in the same way as f(")h ~ once the effective densities of Eqs. (80) 
and (91) have been constructed. 

We have shown how e ("'~ and f(~'~176 may be calculated in a way which closely 
resembles the calculation of e (") and f(")h (1). Exactly the same techniques may 
be used to calculate e (~'1) andf("'~)h O) [which appear in the CI first anharmonicity 
expression Eq. (44)], but in this case we must construct one effective density for 
each perturbation (using ~-o) rather than if(o)). Similar techniques may also be 
used to calculate the terms containing g(,,m) and k ("'m), although the explicit 
expressions become more complicated. We will therefore not describe the calcula- 
tion of these terms in detail. However, for the important special case of single- 
reference CI a simple and general prescription can be given for the calculation 
o f  a (n'm). 

The expressions for SCF Hessians and first anharmonicities contain terms such as 

f(")KO) = 2TrK(1)c~ (n) 

g(")KO)KO) = 2 TrK O)(K O 3, (b(n)) 

k(n)K(1)KO)K( 1 ) = 2TrKO)(K (1), K 0), qb (')) 

where 

ASCF f, .(1) (KO), dP("))pq = E  L'pt~'-'SCVrtK(a), h("))q~ + Y'- "p~vet" , g(")}q~v~ 
B Bz,8 

is the Fock matrix calculated from one-index transformed 

(92) 

(93) 

(94) 

(95) 

integrals, and 
(n ~ K o), qb(")) is the Fock matrix calculated from doubly one-index transformed 
integrals. In the SCF case these matrices may be calculated in the atomic orbital 
(AO) basis [3, 26]. 

The corresponding contributions to the single-reference CI derivatives are 

f("'m) K~ = 2 T rKr (96) 

g(n, rn) K(1)K(1) = 2TrK(1)(KO), q~(,,m)) (97) 

k (n 'm)K( I )K( ' )K(1 )  = 2 TrK(1)(K (1), x(a), q b('m)) (98) 

where @("'~) is the Fock matrix calculated from one-index transformed densities 

D(p~ )= {~'("), DSCF}pq (99) 
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and similarly for the two-electron case. The same set of  effective densities are 
used in all three terms Eqs. (96)-(98) as well as in the term e ~'m). 

When the electronic derivatives f, g, and k are obtained by differentiating the 
GBT condition, the linear transformations of  ~'(') can be transferred completely 
to the densities as discussed above. When the derivatives are obtained by differen- 
tiating the SCF electronic energy, additional terms appear  because of  the sym- 
metrization of  the commutators.  The two procedures give the same final results, 
and are therefore equivalent, but they differ in the complexity with which the 
results are obtained. 

6 .  P r a c t i c a l  c o n s i d e r a t i o n s  

In this section we discuss the practical implementat ion of the above expressions. 
We concentrate on the structure and the general features of  the calculations and 
refer to [3] for more details. 

6.1. The CI gradient 

The calculation of the CI gradient is preceded by the optimization of the MCSCF 
and CI  wave functions, and the determination of the zeroth-order Lagrange 
multipliers ~.(o) [Eqs. (27)-(29)]. The requirements on the numerical accuracy of 
the wave functions and on the multipliers ~.(o) are quite stringent since the error 
in the gradient is linear in the errors in the wave function and the multipliers. 
The multipliers ~(o) are determined using the techniques developed for second- 
order MCSCF optimization and for the solution of the first-order MCSCF 
response equations. 

The subsequent evaluation of the gradient W ~1) according to Eq. (42) is straightfor- 
ward once the effective densities Dp~q 1 and dpEqlrs have been constructed. By adding 
these to the CI  densities 

~ 3 _  c l  ~x (100) Dpq -- Dpq q- Dpq 

and transforming these to the AO basis, the CI  gradient can be calculated in a 
way which closely resembles the calculation of, for example, SCF gradients 
[15, 16]. This allows for a very efficient calculation of CI gradients. 

6.2. The CI Hessian 

The calculation of the CI  Hessian requires the solution of the first-order MCSCF 
and CI  response equations Eqs. (30) and (31) (in that order). No calculation of 
if(l) is needed since the Hessian is an even-order derivative of  the CI  Lagrangian 
(2n + 2 rule). I f  the threshold on the numerical error in the Hessian is e, we must 
calculate A (1) to an error e, and p(1) to an error ~ - .  The strict requirements on 
the error in A (1) occurs since we have eliminated ~.(1) from the CI Hessian 
expression (43). 

The solution of the first-order response equations Eqs. (30)-(31) has been dis- 
cussed before [6, 8]. We only note that in order to construct f(a) and OF(l) the 
first derivatives of the integrals are needed in the molecular orbital (MO) basis. 
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The CI Hessian W (2~ of Eq. (43) consists of three pairs of terms, containing 
second-derivative, first-derivative, and undifferentiated integrals, respectively. 
(Note that these integrals are calculated from symmetrically orthonormalized 
orbitals, and that their derivatives therefore also contain contributions from the 
overlap matrix. Detailed expressions are given in [3]). The terms containing 
second-derivative integrals E (2~ and e (2'~ may be calculated in parallel, using the 

E3 densities DpEq 3 and dpqrs [Eq. (100)] which were constructed and transformed to 
the AO basis when calculating the gradient W (1). No transformation of second- 
derivative integrals to the MO basis is therefore required. 

The terms in Eq. (43) containing the first-derivative integrals may be calculated 
a s  

= D E 4 h ( I )  d E 4  ~(1) F(1)A(a)+f (1'~ 2 TrK(1)A(1)-2 ~ ~ p q  "'pq --  ~ --pqrs,~pqrs 
pq pqrs 

-2e(")  Z C(k~ a~. (101) 
k~MC 

Here A (1) is the Fock matrix calculated from the first-derivative integrals and the 
E3 densities [Eq. (100)], and the E4 densities are given by 

K '  n(1) Dp E4 = D~2+ ~ ( C I l E p q ) t ' ~  (102) 
K ;~CI 

and similarly for the two-electron densities. We note that the CF(1)p(1) contribution 
to Eq. (101) could have been calculated directly from OF(I), since this is needed 
anyway for solving the CI response equations (31). However, the E4 densities 
of Eq. (102) are useful for calculating contributions to the CI first anharmonicities 
(44). 

The contributions to the CI Hessian containing undifferentiated integrals are best 
calculated in the MO basis using direct MCSCF techniques. Again a set of 
modified densities may be constructed to simplify the calculations, although we 
do not give any details here. 

6.3. The Cl  first anharmonicities 

To calculate CI first anharmonicities we need the first-order responses of all the 
variational parameters h ~ p(1), and ~(1). The MCSCF responses h (1) are already 
available to the required accuracy (error less than e) from the calculation of the 
CI Hessian. The CI responses P(a) are also available but the accuracy (error less 
than v/-e) may not be sufficient since the numerical error in CI anharmonicities 
is linear in the error in P(~). Finally the first derivatives of the Lagrange multipliers 
~'(1) are not available from lower derivatives and must be obtained by solving the 
linear equations Eq. (32) to error smaller than e. 

The CI first anharmonicities Eq. (44) contain three distinct sets of terms: the first 
four terms are calculated from CI densities and responses, the next four terms 
have a similar structure but are calculated from ~(o) and the MCSCF densities 
and responses. Finally the three last terms have a structure similar to MCSCF 
Hessians, and are calculated from r and from the MCSCF densities and 
responses. 

The Hessian-like terms are calculated in the same way as the MCSCF contribution 
to the CI Hessian, the only difference being that the modified densities are 
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calculated from ~-(1) rather than ~.(0). Hence one set of  modified densities must 
be constructed for each perturbation. Once these densities have been constructed, 
these contributions to W (3) may be evaluated simultaneously with the calculation 
of  the CI  Hessian. 

The remaining eight contributions to W ~ may be calculated pairwise as discussed 
above for the CI  Hessian. For example, EC3)+e (3'~ may be calculated simul- 
taneously with E(z)+e (2'~ and E(1)+e (1"~ using the same densities E3 [Eq. 
(100)] transformed to the AO basis. Also, the second-derivative terms F(2)A ~ 
and f(2'~ (1) may be evaluated simultaneously with the CI Hessian terms F(~)A ~ 
and f(~'~ using the modified densities E3 [Eq. (100)] and E4 [Eq. (102)]. 
These calculations may be carried out in the AO basis, completely avoiding the 
transformation of second-derivative integrals to the MO basis. 

The remaining four contributions to W (3) are best calculated in the MO basis, 
using standard direct CI  and MCSCF techniques. Again we may simplify the 
calculations by constructing a set of  effective densities. 

7. Conclusions 

We have constructed a CI  energy Lagrangian which is variational in all para- 
meters, including the orbital rotational parameters.  By applying standard teCh- 
niques for variational wave functions to this Lagrangian, we have directly obtained 
a convenient set of  expressions for the CI  response equations and derivatives. 
The state and orbital rotational parameters obey the 2n + 1 rule, and the Lagrange 
multipliers obey the somewhat  stronger 2n + 2  rule. The simplifications which 
are usually obtained by invoking the Handy-Schaefer  technique are automatically 
incorporated to all orders and require no special attention. 

We have derived and discussed CI  derivative expressions up to third order, with 
emphasis on the overall structure. The expressions derived reveal a structure in 
the CI derivatives which has previously not been fully apparent. For example, 
the CI Hessian contains two distinct contributions, both of which are similar to 
the expression for MCSCF Hessians. One of these contributions is calculated 
from CI densities and responses, the other is calculated from MCSCF modified 
densities and responses. By fully exploring this structure one may significantly 
reduce the cost of  CI derivative calculations, as has already been recognized by 
Rice and Amos [15] and Shepard [16] for the calculation of CI gradients. 
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